Study of the ³He(α,γ)⁷Be reaction at Dresden Felsenkeller

Konrad Schmidt,¹ Steffen Turkat,¹ Daniel Bemmerer,² Marcel Grieger,^{1,2}

Sebastian Hammer,^{1,2} Thomas Hensel,^{1,2} Felix Ludwig,^{1,2} Simon Rümmler,^{1,2}

Ronald Schwengner,² Klaus Stöckel,^{1,2} Tamás Szücs,² and Kai Zuber¹

¹Technische Universität Dresden, Germany ²Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany

A key reaction in both Big-Bang nucleosynthesis (BBN) and p-p-chain hydrogen burning is the ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ reaction. The aim of the present study is a comprehensive data set covering the entire BBN range. In a first campaign, γ -ray angular distributions have been measured at the 3 MV Tandetron accelerator of Helmholtz-Zentrum Dresden-Rossendorf (HZDR) with implanted ${}^{3}\text{He}$ targets. Activated samples of ${}^{7}\text{Be}$ ($\approx 53 \text{ d}$ half-life) have been counted at the shallow-underground laboratory Dresden Felsenkeller using a new 150% HPGe detector shielded from cosmic rays by ultralow background copper and lead, active plastic scintillation veto detectors and 140 m water equivalent of rock. A second campaign is planned underground at the new 5 MV Pelletron accelerator Dresden Felsenkeller with a currently designed gas target that can be operated as an extended gas chamber or as a gas jet. Preliminary results of the angular distribution and activation data from the first campaign will be presented as well as the latest status of the Felsenkeller gas-target setup.